

GIS Data Sources (2) Sources of Geodata

Dr. Adrijana Car

Centre for GeoInformatics – UNIGIS Salzburg University

adrijana.car@sbg.ac.at

©2004-2006 UNIGIS - Salzburg University

This material begins by addressing a simple but very effective application of geographic data in decision making. This will demonstrate the nature of geographic data and also emphasize the power of geographic data.

About these materials

- These materials are part of the UNIGIS MSc Core Curriculum and were developed and compiled by
 Wayne Forsythe, Stephen Swales & Adrijana Car.
- Contents of these materials if not stated differently are copyright ©2004-2006 UNIGIS <u>Zentrum für GeoInformatik</u> <u>Salzburg</u> (Z_GIS). The authors of the materials explicitly state that all brand or product names are trademarks or registered trademarks of their respective owners.
- Please note while every precaution has been taken in the preparation of these materials, the authors assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

©2004-2006 UNIGIS - Salzburg University

3

2. The Nature of Geographic Data

- Data are the most important part of a GIS.
- Their acquisition is normally the most costly part of a GIS.
- There are a wide range of data sources for GIS input including analogue and digital forms.

©2004-2006 UNIGIS - Salzburg University

4

	GIS – Data Sources
2.1 From Data to (Geographic Data
What is the meaning of? •Data •Information •Geographic Data	For example: Consider the following raw numbers: 32 - 1 34 - 4 36 - 2 38 - 3 40 - 5 Do they have any meaning?
©2004-200	6 UNIGIS - Salzburg University 5

Data are facts about the real world that are largely useless unless placed in context where their meaning can be appreciated, then they become information, and are useful for a variety of purposes.

Let's look at the following example:

These raw numbers are largely meaningless, unless details are added with respect to what these data represent, such as the unit of measurement (i.e. the number of people with cars) and other context (e.g. addresses):

- 32 Yonge Street 1 person with a car
- 34 Yonge Street 4 people with cars
- 36 Yonge Street 2 people with cars
- 38 Yonge Street 3 people with cars
- 40 Yonge Street 5 people with cars

Now the data are truly information and can be subject to analysis.

They are geographic data in that addresses are shown, but if we map them we can perhaps analyze them more effectively.

The map on the slide does not provide much information. If you check the coordinates on the map, you could determine that the area represented is Lake Ontario. The point data represent the sampling locations from a sediment contamination survey. More information however is needed for a better idea of what is being represented.

The original map now has the data points represented by proportional circles.

Can you observe any spatial relationship? The variable represented in this map is the level of Mercury contamination found in the sediment samples. After collecting and mapping the data, as GIS professionals, the next stage would be to describe the spatial pattern. This particular pattern shows higher concentration levels (larger circles) along the southern shoreline and in the more central (and deeper) parts of the lake. If you were to think of eating bottom-dwelling fish caught in the lake (not a good idea!), it would be wise to use this information to make an informed decision.

What are the chances that you could have picked up the spatial pattern of contamination from a mere table of Mercury levels?

In this case the benefit of additional information in the form of attribute data and spatial data is clear. There are of course other spatial analysis techniques that allow you to perform further analyses on data such as those represented in the preceding maps. The anomalies in the map are also interesting, The northern shoreline of Lake Ontario is less populated.....perhaps this is one of the reasons for the lower contamination levels found in this vicinity.

In this application, the process of moving from raw data to information to geographic information should be apparent. By analyzing geographic data, an enhanced understanding of a problem was achieved, which facilitated decision making.

Of course data have to be acquired (or captured) before you can begin any analysis (see the diagram in the slide). In a sediment contamination study, you may collect the data yourself, in which case they would be primary data. Alternatively, you could have acquired the data from public records, in which case they would be secondary data.

The next slides briefly explore the importance of data in a GIS. Much of this material is concerned with the types of data available for a GIS, the means of data collection, and the methods we use to enter data into GIS.

2.2 The Importance of Data in GIS

- For many observers, data, i.e. geographic information, are the most important part of a GISystem.
 - A GIS cannot function without all its components.
 - Together with data there are additional requirements including software, hardware, personnel (or liveware), and an accommodating institutional context, but geographic data are at the heart of the GIS.

©2004-2006 UNIGIS - Salzburg University

10

2.2 The Cost of Data Capture

	10 s	10 seats		seats
	\$	%	\$	%
Hardware Software Data Staff	30 25 400 440	3.4 2.8 44.7 49.1	250 200 450 2000	8.6 6.9 15.5 69.0
Total	895	100	2900	100

Breakdown of costs (in \$1000s) for two typical client-server GIS implementations. Hardware costs include desktop clients and servers only (i.e. not network infrastructure). Data costs assume the purchase of a landbase and digitizing assets such as pipes and fittings (water utility), conductors and devices (electrical utility), or land and property parcels (local government). Staff costs assume that all core GIS staff will be full-time, but that users will be part-time.

(Source : Longley, P. A., Goodchild, M. F., Maguire, D. J. and Rhind, D. W., 2001. Geographic Information Systems and Science. John Wiley & Sons, Ltd. p. 207. Licensed with permission from John Wiley & Sons, Ltd. Copyright (c) 2001 by John Wiley & Sons, Ltd.)

©2004-2006 UNIGIS - Salzburg University

11

"Data capture costs can account for up to 85% of the cost of a GIS" (Longley et al., 2001).

Consider the emphasis on data, or geographic information, in the following definitions of GIS:

 "A system for capturing, storing, checking, manipulating, analyzing and displaying data which are spatially referenced to the Earth" (Lord Chorley, 1987).

 "A powerful set of tools for storing and retrieving at will, transforming and displaying spatial data from the real world for a particular set of purposes" (Burrough, 1986).

 "Geographic Information System - A system of hardware, software, data, people, organizations and institutional arrangements for collecting, storing, analyzing and disseminating information about areas of the earth" (Dueker and Kjerne, 1989).

2.2.1 GIS Functions

GIS Function	Examples		
Capturing	data entry, table creation, digitizing, geocoding.		
Storing	attribute table, database management system.		
Checking	checking a list of postal codes that are to be used to create a map of locations (a process known as geocoding).		
Retrieving	calling up information directly from a map using an information tool and selecting information from a table.		
Manipulating	changing projections; generalising (classifying) data into categories for mapping purpose		
Analysing	descriptions of geographical patterns, measuring the association between variables.		
Displaying	maps, graphs, tables, images.		
Output maps, graphs, tables and images.			
	©2004-2006 UNIGIS - Salzburg University 13		

It is the geographic nature of the data that distinguishes GIS from other information systems; it is a *geographic information* system. The key functions of a GIS involve *doing something with geographic data*.

Categorical		Scalar	
Nominal	Ordinal	Interval	Ratio
Presence/absence Counting Diff. in degree or quality Equality of category	Sequence Rel. position	Differences Arbitrary Zero	Ratio Real Zero * ,/
Classification	Ordering	Meas	uring
name of city type of land use name of highway	large city wettest soil primary highway	angle or bearing in degrees (cycle)	number of people, passengers distance
(see Laurini and Thompson, p.70)			
		,	1 71 7

Geographic attributes can be measured in different ways. The usual standards of measurement of data are *nominal, ordinal, interval, and ratio*. In GIS - in addition to nominal, ordinal, interval, and ratio - measurements such as *cyclic*.

The level of measurement is important because it affects data representation (e.g. in map types) and also what kind of analysis we can do with the data.

A *nominal* measurement is simply the category name of something such as maple tree, oak tree, or ash tree. No order is implied in these labels.

Ordinal data are categories that are ranked and therefore do imply order. We could, for example, rank the tree types from best to worst for construction purposes. The Richter scale of earthquakes and the Beaufort scale of wind strength are also ordinal scales of measurement.

The *interval* level of data management is more precise because numbers are assigned to the observations being measured. An example would be the Celsius temperature scale. However zero on this scale is an arbitrary starting point and is not an observation of no temperature; a value of 30 degrees, for example, can not be said to be twice as warm as 15 degrees.

The highest level of measurement is *ratio* where a zero measurement is zero quantity of the observed phenomenon, and the observations can be subject to meaningful mathematical operations. For example, if one census tract has an average annual income of \$100, 000 and another \$50,000 we can say that the first has twice the income of the second.

Chrisman (1997) has identified the special nature of some geographic data such as *cyclic*. For example, in compass directions, what is closest to 0, 359 degrees or 1 degree? If you are taking a circular journey through Hell and reach 180 degrees, you may just as well keep going! (Unless, of course, the degrees are in temperature!)

As mentioned earlier: The level of measurement is important because it affects data representation (e.g. in map types) and also what kind of analysis we can do with the data. See the above examples.

- Examples of primary data sources are:
 - remote sensing data
 - GPS measurements
 - surveying, etc.
- •Secondary data sources were originally created for a use other than GIS.

• E	XRAALESVIOORLOD:>	SURVEY METHODS >	RAW DATA
	■ topo	graphic mans and sing	e.g. Scanned images
	■ plac	Ground survey	Photographs
		Interviews	Field documents
		Borehole logging	Census data
Source: Jones. 1997. <i>Geographical Information Systems and Computer Cartography</i>			ems and Computer

2.2.3 GIS Data Sources (2)

Classification of geographic data for data collection purposes Raster Vector Primary - Digital remote sensing images - Digital aerial photographs - GPS measurements Secondary - Scanned maps of photographs - Digital elevation models from maps - Topographic maps - Toponymy (placename) databases Source: Longley et al., 2001. Geographic Information Systems and Science, Chichester: Wiley.					
Raster Vector Primary - Digital remote sensing images - Digital aerial photographs - GPS measurements - Survey measurements Secondary - Scanned maps of photographs - Digital elevation models from maps - Topographic maps - Toponymy (placename) databases Source: Longley et al., 2001. Geographic Information Systems and Science, Chichester: Wiley. - 18	Classifica	Classification of geographic data for data collection purposes			
Primary - Digital remote sensing images - Digital aerial photographs - GPS measurements Secondary - Scanned maps of photographs - Digital elevation models from maps - Topographic maps - Toponymy (placename) databases Source: Longley et al., 2001. Geographic Information Systems and Science, Chichester: Wiley. ©2004-2006 UNIGIS - Salzburg University 18		Raster	Vector		
Secondary - Scanned maps of photographs - Topographic maps - Digital elevation models from maps - Toponymy (placename) databases Source: Longley et al., 2001. Geographic Information Systems and Science, Chichester: Wiley. ©2004-2006 UNIGIS - Salzburg University 18	Primary	 Digital remote sensing images Digital aerial photographs 	- GPS measurements - Survey measurements		
Source: Longley et al., 2001. Geographic Information Systems and Science, Chichester: Wiley. ©2004-2006 UNIGIS - Salzburg University 18	Secondary	 Scanned maps of photographs Digital elevation models from maps 	- Topographic maps - Toponymy (placename) databases		
©2004-2006 UNIGIS - Salzburg University 18	Source: Longley et al., 2001. Geographic Information Systems and Science, Chichester: Wiley.				
©2004-2006 UNIGIS - Salzburg University 18					
		©2004-2006 UNIGIS - Salzburg University 18			

The type of primary and secondary data will vary according to the type of GIS data model being used: raster or vector, as summarized in the table.

Data catalogues also tend to categorize based on areas of the world (usually on the scales of major cities, countries, and continents). Unfortunately, these scales often omit smaller regions and communities (USGS, 2003).

Both vector and raster data can be found in Data Catalogues (ESRI, 2004).

Query Tools are provided for the data catalogue users

• Query tools aid users in finding the correct information.

• They often employ simple Geographic Information Systems to help the user.

• Queries utilize the organization techniques employed by the individuals who own or operate the catalogue. For example they combine the discipline (eg. Geography), spatial requirements (eg. South America) and the content theme (eg. cultural and demographic).

• This type of query is utilized by such data catalogue organizations as the Geography Network (http://www.geographynetwork.com/) and GeoGratis (http://www.geogratis.ca) - (Nebert, 2003).

2.3.1 Query Interfa	Ices for Data Cataolgues
explorer нар • Where would you like to explore?	Clearinghouse Search Form
Search for place name (e.g., Cairo): japan	Define the Geographic Area of Coverage Help Specify a query region by selecting or entering values
Or draw a search area :	Worth International O United States Central America Central America China West -77.16 64.9 South 56.79
Choose content type: Downloadable Data Choose content theme: Hurnan Health & Disease Optional Keyword (e.g., river): SEARCH	Specify Time Period of Content Help Specify a date or date range for desired spatial data by selecting one of the methods below. • Don't search based on time period • O for t search based on time period • Get data whose date is before • the date Mey • 15 • 1998 • G et data from Jan. • 15 • 1998 through Jun. • 15 • 1998

Example query interfaces from:

• the Geography Network (left - http://www.geographynetwork.com/)

•and the National Spatial Data Infrastructure (right - http://edcw2ks15.cr.usgs.gov/servlet/FGDCServlet).

The questions in this area include:

•Are the data available at no cost?

•Must they be purchased or must a distribution fee be paid?

•Are users required to register with the data catalogue?

Once the query has been performed and executed, the resulting data will be displayed. The above points outline what is required of the user before the data can be utilized. Although some data are free, other data can become quite expensive and therefore becomes unavailable to individual users (USGS, 2003)

The above methods for obtaining data are an important aspect as they will determine how quickly the data will become available and how the data will be applied (which software program etc) - (USGS, 2003).

The metadata information should include:

- Spatial data organization information
- Spatial reference information
- Attribute information
- Distribution information
- Metadata Reference information
- Information about which program the data are compatible with (NSDI, 2004).

Metadata can reveal:

- legend information
- file extension
- compression type

• and can give some indication as to the quality or reliability of the data (NSDI, 2004).

This and the next slide illustrate the importance of metadata.

On the above slide is the raw image as it comes when it is downloaded. It is impossible to know what the map is displaying.

• The use of metadata allows for the user to make sense of the information which is contained in the image.

• This demonstration shows how important the metadata are when obtaining images from data catalogues.

• Without metadata, the image cannot not be interpreted. Metadata allows for the attributes to be identified (without metadata, the legend could not be determined). The projection can now be displayed and titles such as the source and date can be added accordingly.

• Raw image and metadata obtained from World Resources Institute (http://earthtrends.wri.org/) and outputs created in ArcMap 8.3.

Data can come in many different forms which are only compatible with certain programs. Sometimes data catalogues provide the user with on-line applications. Commercial software is sometimes required to view data that have proprietary formats (USGS, 2003).

Online applications will often allow the user to zoom in and out of an image or map, select or identify certain features/landforms, and perform minimal levels of analysis (USGS, 2004). E.g. see Geography Network online application (http://www.geographynetwork.com/).

Online applications are basically equivalent to very simple and user friendly GIS's (USGS, 2004). USGS National Map Viewer

(http://nmviewogc.cr.usgs.gov/viewer.htm) is another such example.

2.4.2 Prominent Data Catalogues

Some prominent Data Catalogues include and can be located at:

- CAST Centre for Advanced Spatial Technologies
 http://ww.cast.uark.edu/
- Geography Network (ESRI) http://www.geographynetwork.com/
- National Geospatial Data Clearinghouse (USGS is a node of this data catalogue)
- http://www.fgdc.gov/clearinghouse/clearinghouse.html
- World Resources Institute http://earthtrends.wri.org/
- Geogratis (Natural Resources Canada)
 http://geogratis.cgdi.gc.ca/clf/en

©2004-2006 UNIGIS - Salzburg University

27

	GIS – Data Sources				
References					
	See the notes section for the full reference list				
		20			
	©2004-2006 UNIGIS - Salzburg University	28			

• ESRI. 2004. Geography Network – Frequently Asked Questions. Environmental Systems Research Institute Inc. Available on the World Wide Web: http://www.geographynetwork.com/faq_details.html#datatype

· GeoGratis (Natural Resources Canada). 2004. http://www.geogratis.ca and http://geogratis.cgdi.gc.ca/clf/en

Nebert, D. 2000. Developing Spatial Data Infrastructures: The SDI Cookbook. Global Spatial Data Infrastructure Association. Available on the World Wide Web at: http://www.gsdi.org/pubs/cookbook/

Nebert, D. 2003. U.S. National Spatial Data Infrastructure. U.S. Federal Geographic Data Committee. Available on the World Wide Web at: http://wwwlmu.jrc.it/ginie/sdi_ws/323,34,Douglas Nebert

• NSDI. 2004. Geospatial Metadata. National Spatial Data Infrastructure. Available on the World Wide Web at:

http://www.fgdc.gov/publications/documents/metadata/metafact.pdf

The Geography Network (ESRI). 2004. http://www.geographynetwork.com

• Aronoff, S. 1989, Geographic Information Systems: A Management Perspective, Ottawa: WDL Publications.

• Bernhardsen, T. 1999, Geographic Information Systems: An Introduction, New York: Wiley.

• Birkin, M, G. Clarke, M. Clarke and A. Wilson 1996, Intelligent GIS, GeoInformation International/Wiley.

• Business Geographics, Fort Collins, Co.: GIS World Inc.

• Castle, G., 1993, Profiting from a GIS, Fort Collins: GIS World Books.

Chang, Kang-tsung, 2004, Introduction to Geographic Information Systems, New York: McGraw Hill.

• Chrisman, N. 2002, Exploring Geographic Information Systems, New York: Wiley.

• Clarke, K.C. 2003, Getting Started in Geographic Information Systems, New Jersey: Prentice Hall.

• Delaney, J., 1999, Geographical Information Systems: An Introduction, South Melbourne: Oxford.

• DeMers, M. N. 2000, Fundamentals of Geographic Information Systems, New York: Wiley.

• Dueker, K. J., and Kjerne, D. 1989, Multipurpose cadastre: terms and definitions, Falls Church, VA: ASPRS AND ACSM.

• ESRI, 1997, Getting to Know ArcView GIS, Cambridge: GeoInformation

• Grimshaw, D. J., 2000, Bringing Geographical Information Systems into Business, New York: Wiley.

• Harder, C. 1997, ArcView GIS Means Business, Redlands: ESRI.

• Heywood, I., S. Cornelius and S. Carver 2002, An Introduction to Geographical Information Systems, Harlow: Longman.

• Jensen, J. R., 2000, Remote Sensing of the Environment, Upper Saddle River, N.J.: Prentice Hall.

• Jones, C. 1997, Geographical Information Systems and Computer Cartography, Harlow: Longman.

• Kitchin, R. and N. J. Tate 2000, Conducting Research into Human Geography, Harlow: Prentice Hall.

• Laurini, R. and D. Thompson, 1992, Fundamentals of Spatial Information Systems, London: Academic Press.

• Longley, P. and G. Clarke (eds.) 1995, GIS for Business and Service Planning, Cambridge: GeoInformation.

• Longley, P., M.F. Goodchild, D. Maguire and D. Rhind 1999, Geographical Information Systems: Principles, Techniques, Management, Applications. New York: John Wiley.

• Longley, P. A., M .F. Goodchild, D. J. Maguire and D. W. Rhind 2001, Geographic Information Systems and Science, Chichester: Wiley.

• Maguire, D., M. Goodchild and D. Rhind, (eds.) 1991, Geographical Information Systems: Principles and Applications, New York: Wiley.

• Martin, D. 1998, "Geographical Information Systems and Spatial Analysis", in R. Flowerdew and D. Martin (eds.) Methods in Human Geography: A guide for students doing a research project. Harlow: Longman.

• Masser, I., and M. Blakemore, 1991, Handling Geographical Information, Essex: Longman.